首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  2019年   1篇
  2015年   1篇
  2013年   12篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有28条查询结果,搜索用时 156 毫秒
21.
22.
23.
We consider a discrete‐time groundwater model in which the cost of pumping takes a slightly different form to that which has been traditional in the research literature to date. This enables us to prove that (a) the optimal pumping quantity is nondecreasing in the ground water stock, (b) the stock level remaining after each period's pumping is also nondecreasing in the groundwater stock, (c) the optimal decision is determined by maximizing a concave function, and finally (d) the optimal pumping quantity is nonincreasing in the number of periods to go. We show that (a)–(c), while intuitive, do not hold under traditional modeling assumptions. We also explain the connections between our results and similar ones for some classic problems of operations research. © 2011 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2011  相似文献   
24.
25.
26.
We consider the shortest path interdiction problem involving two agents, a leader and a follower, playing a Stackelberg game. The leader seeks to maximize the follower's minimum costs by interdicting certain arcs, thus increasing the travel time of those arcs. The follower may improve the network after the interdiction by lowering the costs of some arcs, subject to a cardinality budget restriction on arc improvements. The leader and the follower are both aware of all problem data, with the exception that the leader is unaware of the follower's improvement budget. The effectiveness of an interdiction action is given by the length of a shortest path after arc costs are adjusted by both the interdiction and improvement. We propose a multiobjective optimization model for this problem, with each objective corresponding to a different possible improvement budget value. We provide mathematical optimization techniques to generate a complete set of strategies that are Pareto‐optimal. Additionally, for the special case of series‐parallel graphs, we provide a dynamic‐programming algorithm for generating all Pareto‐optimal solutions.  相似文献   
27.
28.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号